Specifications

854E-E34TA and 854F-E34T Industrial Engines

JR (Engine) JS (Engine) JT (Engine)

Important Safety Information

Most accidents that involve product operation, maintenance and repair are caused by failure to observe basic safety rules or precautions. An accident can often be avoided by recognizing potentially hazardous situations before an accident occurs. A person must be alert to potential hazards. This person should also have the necessary training, skills and tools to perform these functions properly.

Improper operation, lubrication, maintenance or repair of this product can be dangerous and could result in injury or death.

Do not operate or perform any lubrication, maintenance or repair on this product, until you have read and understood the operation, lubrication, maintenance and repair information.

Safety precautions and warnings are provided in this manual and on the product. If these hazard warnings are not heeded, bodily injury or death could occur to you or to other persons.

The hazards are identified by the "Safety Alert Symbol" and followed by a "Signal Word" such as "DANGER", "WARNING" or "CAUTION". The Safety Alert "WARNING" label is shown below.

WARNING

The meaning of this safety alert symbol is as follows:

Attention! Become Alert! Your Safety is Involved.

The message that appears under the warning explains the hazard and can be either written or pictorially presented.

Operations that may cause product damage are identified by "NOTICE" labels on the product and in this publication.

Perkins cannot anticipate every possible circumstance that might involve a potential hazard. The warnings in this publication and on the product are, therefore, not all inclusive. If a tool, procedure, work method or operating technique that is not specifically recommended by Perkins is used, you must satisfy yourself that it is safe for you and for others. You should also ensure that the product will not be damaged or be made unsafe by the operation, lubrication, maintenance or repair procedures that you choose.

The information, specifications, and illustrations in this publication are on the basis of information that was available at the time that the publication was written. The specifications, torques, pressures, measurements, adjustments, illustrations, and other items can change at any time. These changes can affect the service that is given to the product. Obtain the complete and most current information before you start any job. Perkins dealers or Perkins distributors have the most current information available.

WARNING

When replacement parts are required for this product Perkins recommends using Perkins replacement parts.

Failure to heed this warning can lead to premature failures, product damage, personal injury or death.

Table of Contents

Specifications Section

Engine Design	4
Fuel Injection Lines	
Fuel Injection Pump	
Fuel Injectors	
Fuel Filter Base (Secondary Fuel Filter Base)	. 5
Fuel Filter Base (Primary Fuel Filter Base)	
Fuel Manifold (Rail)	
Lifter Group	7
Rocker Shaft	
Valve Mechanism Cover	9
Cylinder Head Valves	10
Cylinder Head	10
Turbocharger	13
Exhaust Gas Valve (NRS)	14
Exhaust Cooler (NRS)	14
Exhaust Manifold	15
Flexible Exhaust Pipe	16
Diesel Particulate Filter (Through Flow Diesel	
Particulate Filter (DPF))	17
Diesel Particulate Filter (Wall Flow Diesel	
Particulate Filter (DPF))	17
Camshaft	17
Camshaft Bearings	18
Engine Oil Filter Base	18
Engine Oil Cooler	19
Engine Oil Pump	
Engine Oil Pressure	19
Engine Oil Pan (Cast Iron Oil Pan)	19
Engine Oil Pan (Aluminum Oil Pan)	22
Engine Oil Pan (Pressed Steel Oil Pan)	24
Crankcase Breather	
Water Temperature Regulator and Housing	26
Water Pump	
Cylinder Block	
Crankshaft	
Connecting Rod Bearing Journal	
Main Bearing Journal	30
Connecting Rod	
Piston and Rings	
Piston Cooling Jet	
Balancer	
Front Housing and Covers	
Gear Group (Front)	
Flywheel	
Flywheel Housing	
Crankshaft Pulley	37

Fan Drive	38
Engine Lifting Bracket	38
Alternator	
Starter Motor	41
Coolant Temperature Sensor	42
Boost Pressure Sensor (If equipped)	
Oxygen Sensor	43
Inlet Manifold Temperature Sensor (If	
equipped)	43
Inlet Manifold Temperature and Pressure Sens	
(If equipped)	
Temperature Sensor (DPF Inlet)	44
Temperature Sensor (DOC Inlet)	
Pressure Sensor (NOx Reduction System)	45
Temperature Sensor (NOx Reduction System)	
Speed/Timing Sensor	
Electronic Control Module	
Glow Plugs	47
Index Section	
Index	48

Specifications Section

i05240674

i04134174

q01353215

Engine Design

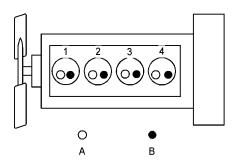


Illustration 1
Cylinder and valve location

Cyllinder and valve i

(A) Inlet valve (B) Exhaust valve

Bore	99 mm (3.90 inch)
Stroke	110 mm (4.33 inch)
Displacement	3.4 L (207 in3)
Cylinder arrangement	In-line
Type of combustion	Direct injection
Compression ratio	
Turbocharged aftercooled	17.5:1

rarboorlarged aftercooled	17.5.1
Number of cylinders	4
Valves per cylinder	2
Firing order1,	3, 4, 2

When the crankshaft is viewed from the flywheel end of the engine, the crankshaft rotates in the following direction:Counterclockwise

When the camshaft is viewed from the flywheel end of the engine, the camshaft rotates in the following direction:Counterclockwise

Note: The left side and the right side of the engine are viewed from the flywheel end. The No. 1 cylinder is the front cylinder.

Fuel Injection Lines

WARNING

Contact with high pressure fuel may cause fluid penetration and burn hazards. High pressure fuel spray may cause a fire hazard. Failure to follow these inspection, maintenance and service instructions may cause personal injury or death.

Refer to Operation and Maintenance Manual, "General Hazard Information and High Pressure Fuel Lines" before adjustments and repairs are performed.

NOTICE

Refer to Systems Operation, Testing, and Adjusting, "Cleanliness of Fuel System Components" for detailed information on the standards of cleanliness that must be observed during ALL work on the fuel system.

Ensure that all adjustments and repairs are performed by authorized personnel that have had the correct training.

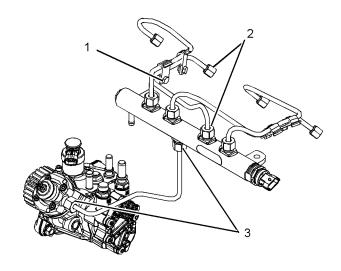


Illustration 2 g02501177

Typical example

- (1) Tighten the screws to the following torque.
 10 N·m (89 lb in)

i05240671

Fuel Injection Pump

NOTICE

Refer to Systems Operation, Testing, and Adjusting, "Cleanliness of Fuel System Components" for detailed information on the standards of cleanliness that must be observed during ALL work on the fuel system.

Ensure that all adjustments and repairs are performed by authorized personnel that have had the correct training.

Illustration 3

g02621683

Typical example

(1) Tighten the nuts to the following torque.25 N⋅m (18 lb ft)

i05240672

Fuel Injectors

Refer to Operation and Maintenance Manual, "General Hazard Information and High Pressure Fuel Lines" before adjustments and repairs are performed.

NOTICE

Refer to Systems Operation, Testing and Adjusting, "Cleanliness of Fuel System Components" for detailed information on the standards of cleanliness that must be observed during ALL work on the fuel system.

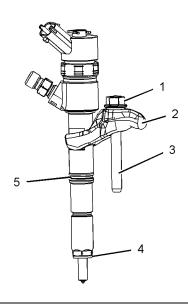


Illustration 4

g03342579

Typical example

- (2) Clamp
- (4) Washer
- (5) O ring seal

- (1) Tighten the injector fastening nut to a final torque.25 N·m (18 lb ft)

i05240679

Fuel Filter Base

(Secondary Fuel Filter Base)

NOTICE

Refer to Systems Operation, Testing, and Adjusting, "Cleanliness of Fuel System Components" for detailed information on the standards of cleanliness that must be observed during ALL work on the fuel system.

If necessary, install a new fuel filter element to canister (6). Refer to Operation and Maintenance Manual, "Fuel System Secondary Filter - Replace" for the correct procedure.

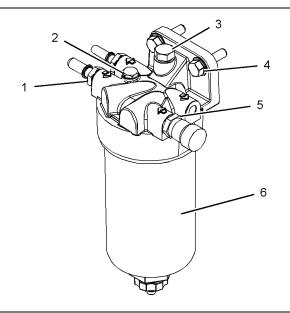


Illustration 5 g02621258

Typical example

- (1) Tighten the connections to the following torque.25 N·m (18 lb ft)
- (2) Tighten the screw to the following torque.2.5 N·m (22 lb in)
- (4) Tighten the setscrews to the following torque.25 N·m (18 lb ft)
- (5) Tighten the fuel temperature sensor to the following torque.......22 N·m (16 lb ft)

i05240680

Fuel Filter Base (Primary Fuel Filter Base)

NOTICE

Refer to Systems Operation, Testing, and Adjusting, "Cleanliness of Fuel System Components" for detailed information on the standards of cleanliness that must be observed during ALL work on the fuel system.

If necessary, install a new fuel filter element to canister (2). Refer to Operation and Maintenance Manual, "Fuel System Primary Filter (Water Separator) Element - Replace" for the correct procedure.

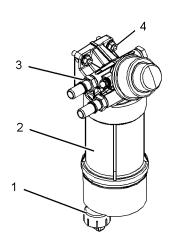


Illustration 6

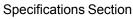
q02606186

Typical example

(1) Tighten the water in fuel sensor to the following torque......2.5 N·m (22 lb in)

Note: Tighten water in fuel sensor until the O-ring seal comes into contact with the bowl of the water separator. Tighten the water in fuel sensor an additional 180 degrees.

- (3) Tighten the connection to the following torque.20 N·m (15 lb ft)
- (4) Tighten the setscrews to the following torque.44 N·m (32 lb ft)


i04424550

Fuel Manifold (Rail)

Refer to Operation and Maintenance Manual, "General Hazard Information and High Pressure Fuel Lines" before adjustments and repairs are performed.

NOTICE

Refer to Systems Operation, Testing and Adjusting, "Cleanliness of Fuel System Components" for detailed information on the standards of cleanliness that must be observed during ALL work on the fuel system.

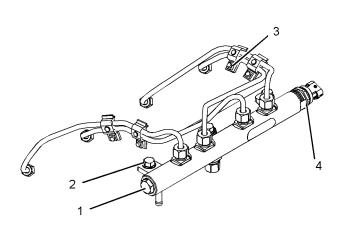


Illustration 7 g02621238 Typical example (1) Tighten the fuel pressure relief valve to the following torque......100 N·m (74 lb ft) (2) Tighten the bolts to the following torque.....25 N·m (18 lb ft) (3) Tighten the bolts to the following torque.....10 N·m

(4) Tighten the fuel pressure sensor to the following

torque......70 N·m (52 lb ft)

i04332521

(89 lb in)

Lifter Group

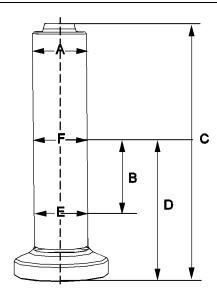


Illustration 8 g02488296

Typical example

- (B) 26 mm (1.02362 inch)
- (D) 38 ± 0.25 mm (1.49606 ± 0.00984 inch)
- (A) Diameter of the lifter body 14.780 ± 0.04 mm $(0.58189 \pm 0.00157 inch)$
- (C) Height of the lifter body............................... 67 \pm 0.25 mm $(2.63779 \pm 0.00984 inch)$
- (E) Diameter of the lifter body 14.970 ± 0.02 mm $(0.58937 \pm 0.00079 inch)$
- (F) Diameter of the lifter body 14.780 ± 0.04 mm $(0.58189 \pm 0.00157 inch)$

Bore diameter in the cylinder block ... 15.4 to 15.6 mm (0.60630 to 0.61417 inch)

Clearance

Clearance of the lifter............ 0.020 to 0.054 mm (0.00079 to 0.00213 inch)

i04823040

Rocker Shaft

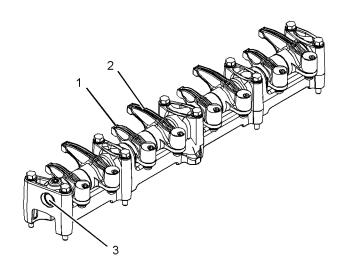


Illustration 9 g02842156

Typical example

(1) Inlet rocker arm

Diameter of the rocker arm bore19.020 to 19.033 mm (0.74882 to 0.74933 inch)

(2) Exhaust rocker arm

Diameter of the rocker arm bore19.020 to 19.033 mm (0.74882 to 0.74933 inch)

Clearance

(3) Diameter of the rocker shaft

......18.979 to 19.000 mm (0.74720 to 0.74803 inch)

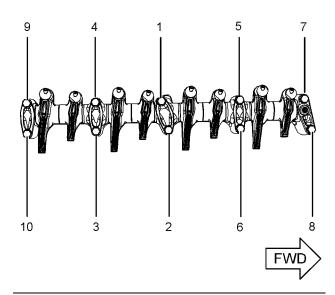


Illustration 10 g02681778

Tightening sequence

 i04335229

Valve Mechanism Cover

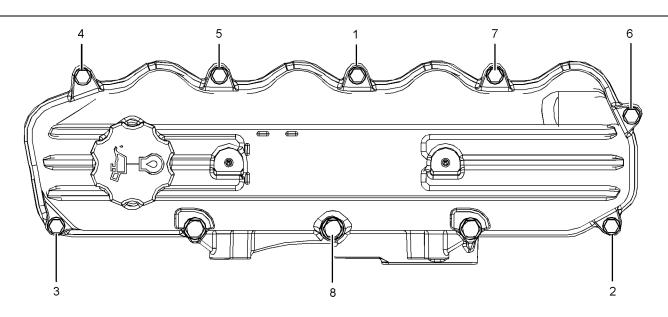


Illustration 11 g02490536

Typical example

Tighten the M8 fastener (8) in the sequence shown in illustration 11 to an initial torque.......10 $N \cdot m$ (89 lb in)

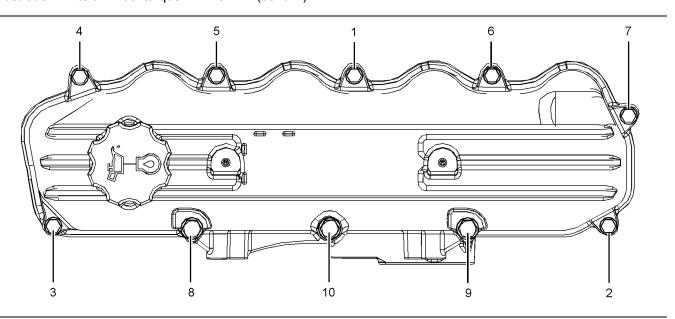


Illustration 12 g02727663

Tighten the M8 fasteners (8), (9) and (10) in the sequence shown in illustration 12 to a final torque.

25 N·m (18 lb ft)

i04335069

Cylinder Head Valves

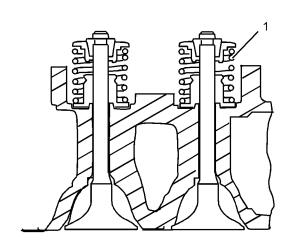


Illustration 13 g01335203

Typical example

When the valve springs (1) are replaced the valve springs must be replaced in pairs.

The free length for the valve spring44.6 mm (1.75590 inch)

Table 1

The load for the valve spring	The length of the valve spring
270 N (61 lb)	34 mm (1.33858 inch)
528 N (119 lb)	23.8 mm (0.93701 inch)

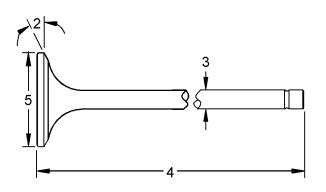


Illustration 14 g01335204

(2) Valve face angle

(3) Valve stem diameter

Clearance

Clearance of the inlet valve stem 0.040 to 0.053 mm (0.00157 to 0.00209 inch)

Clearance

Clearance of the exhaust valve stem 0.040 to 0.053 mm (0.00157 to 0.00209 inch)

(4) Length of valve

(5) Valve head

Diameter of inlet valve head ... 41.43 to 41.69 mm (1.63110 to 1.64134 inch)
Diameter of exhaust valve head 37.27 to 37.53 mm (1.46732 to 1.47756 inch)

i04894560

Cylinder Head

Illustration 15 g03005658

Typical example

Lubricate the threads and the underside of the head bolts with clean engine oil.

Tighten the M15 bolts in the sequence that is shown in illustration 15 to the following torque130 N·m (96 lb ft)
Tighten the M12 bolts in the sequence that is shown in illustration 15 to the following torque65 N·m (48 lb ft)
Tighten the M15 bolts in the sequence that is shown in illustration 15 to the additional amount.
Tighten the M12 bolts in the sequence that is shown in illustration 15 to the additional amount90 degrees
Tighten the M15 bolts in the sequence that is shown in illustration 15 to the additional amount70 degrees
Tighten the M12 bolts in the sequence that is shown in illustration 15 to the additional amount60 degrees
Minimum thickness of cylinder head90 mm

(3.54330 inch)

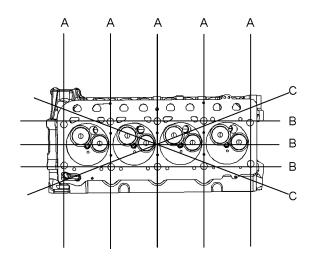


Illustration 16 g02490336

Note: The maximum distortion of the bottom face of the cylinder head is given in table 2.

Table 2

Table 2	
Dimension	Maximum Permissible Distortion
Width (A)	0.05 mm (0.00197 inch)
Length (B)	0.05 mm (0.00197 inch)
Diagonal Line (C)	0.05 mm (0.00197 inch)

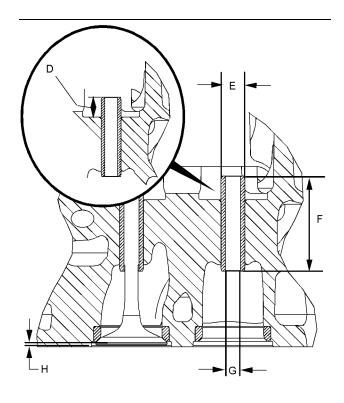


Illustration 17 g02328933

Typical example

(D) Valve guide height from the top of the valve guide to the valve spring seat............. 6.5 mm (0.25590 inch)

- (E) Outside diameter of the valve guides 12.950 to 12.985 mm (0.50984 to 0.51122 inch)
- (F) Length of the valve guides 56 mm (2.20472 inch)
- (G) Internal diameter of the valve guides8.023 to 8.038 mm (0.31587 to 0.31646 inch)
- (H) Valve depths

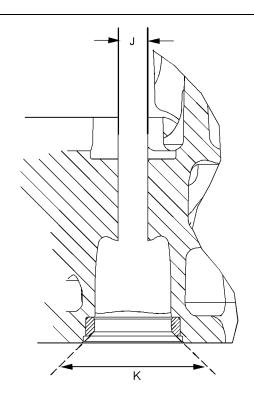


Illustration 18 g02474819

Typical example

- (J) Diameter of the parent bore in the cylinder head 12.960 to 12.995 mm (0.51024 to 0.51161 inch)
- (K) Seat angle

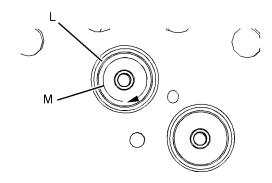


Illustration 19 g02847819

13 Specifications Section

(L) Seat surface finishRa 0.5 microns

i05239446

Turbocharger

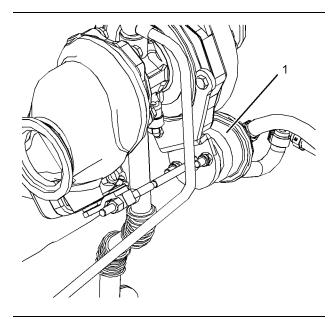


Illustration 20
Typical example

g02626265

(1) Actuator

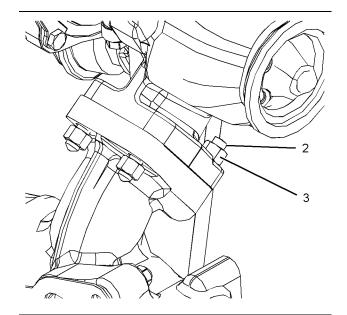


Illustration 21

g02626267

Typical example

- (2) Tighten the studs to the following torque.
 15 N·m (11 lb ft)
- (3) Tighten the nuts to the following torque.25 N·m (18 lb ft)

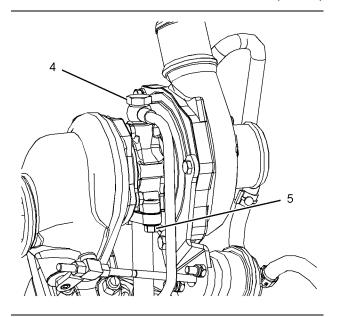


Illustration 22

g02626269

Typical example

- (4) Tighten the bolt to the following torque.22 N·m (16 lb ft)
- (5) Tighten the bolts to the following torque.....25 N·m (18 lb ft)

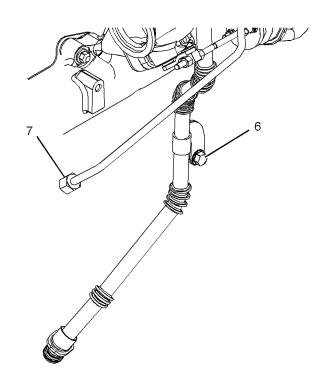


Illustration 23 g02626270
Typical example

- (6) Tighten the setscrew to the following torque.25 N·m (18 lb ft)
- (7) Tighten the nut to the following torque.25 N·m (18 lb ft)

i05239430

Exhaust Gas Valve (NRS)

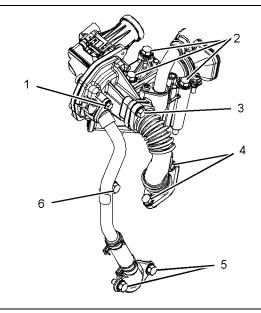


Illustration 24 g02626260

Typical example

- (2) Tighten the setscrews to the following torque.40 N·m (30 lb ft)
- (3) Tighten the setscrews to the following torque.20 N·m (15 lb ft)
- (4) Tighten the setscrews to the following torque.20 N·m (15 lb ft)
- (5) Tighten the setscrews to the following torque.20 N·m (15 lb ft)
- (6) Tighten the setscrew to the following torque.20 N·m (15 lb ft)

i04426264

Exhaust Cooler (NRS)

15

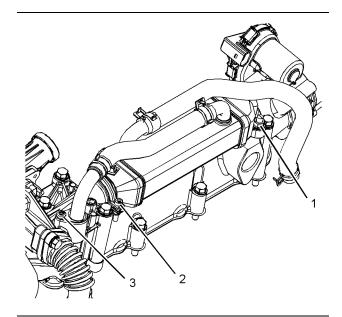


Illustration 25 g02621805

Typical example

(1) Tighten the nuts to the following torque.25 N·m $$(18\ lb\ ft)$$

(3) Tighten the fastener to the following torque.10 N·m (89 lb in)

i05239453

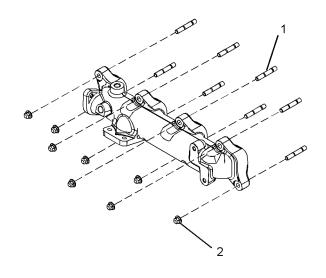


Illustration 26 g02909156

Typical example

(1) Tighten the studs to the following torque.18 N·m (13 lb ft)

Exhaust Manifold

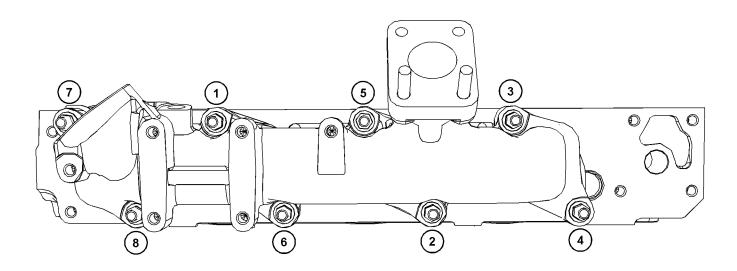


Illustration 27 g02725251

Typical example

(2) Tighten the nuts to an initial torque. Tighten the nuts in the sequence that is shown in Illustration 27.10 N·m (89 lb in)

(2) Tighten the nuts to a final torque. Tighten the nuts in the sequence that is shown in Illustration 27.27 N·m (20 lb ft)

i05287664

Flexible Exhaust Pipe

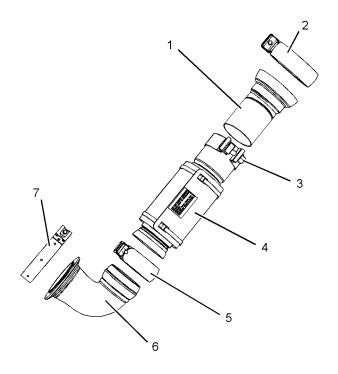


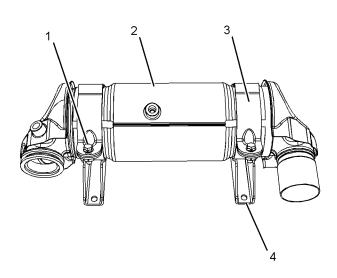
Illustration 28

g03180056

Typical example

- (1) Tube assembly
- (4) Bellows (6) Elbow
- (2) Tighten the ball clamp to the following torque.35 N·m (26 lb ft)

Specifications Section


(3) Tighten the clamp to the following torque.
55 N·m (41 lb ft)
(5) Tighten the ball clamp to the following torque.

(7) Tighten the V-band clamp to the following torque.
......12 N·m (106 lb in)

i05287843

i05287571

Diesel Particulate Filter (Through Flow Diesel Particulate Filter (DPF))

Diesel Particulate Filter (Wall Flow Diesel Particulate Filter (DPF))

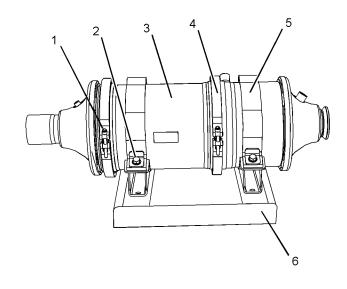


Illustration 30 g03358816

Typical example

- (3) Diesel Particulate Filter (DPF)
- (4) Clamps
- (5) Clamps
- (6) Mounting bracket
- (1) Tighten the bolts to the following torque......9 N⋅m (80 lb in)
 (2) Tighten the bolts to an initial torque.......8 N⋅m (71 lb in)
 (2) Tighten the bolts to a second torque.......16 N⋅m (12 lb ft)

(2) Tighten the bolts to a final torque.25 N·m

(18 lb ft)

i05239470

Camshaft

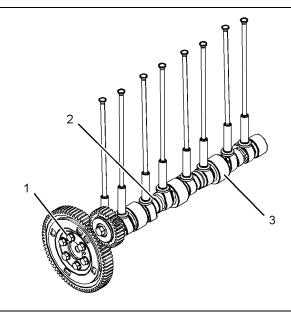


Illustration 31 g02844377

Typical example

(1) Bolts

Torque for the bolts25 N·m (18 lb ft)

(2) End play of a camshaft...... 0.1 to 0.3 mm (0.00394 to 0.01181 inch)

Maximum permissible end play of a worn camshaft0.3 mm (0.01181 inch)

(3) The diameters of the camshaft journals are given in the following tables.

Table 3

Camshaft Journals from the Front End of the Engine	Standard Diameter
1	53.995 to 54.045 mm
Front	(2.12578 to 2.12775 inch)
2, 3 and 4	49.975 to 50.025 mm (1.96752 to 1.96948 inch)
5	39.975 to 40.025 mm
Rear	(1.57382 to 1.57578 inch)

Check the camshaft lobes for visible damage. If a new camshaft is installed, you must install new lifters.

i04411212

Camshaft Bearings

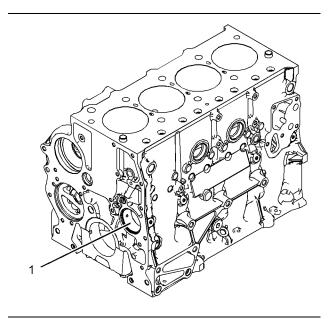


Illustration 32 g02608336

Typical example

(1) The diameter of the installed camshaft bearing54.083 to 54.147 mm (2.12925 to 2.13177 inch)

i05240691

Engine Oil Filter Base

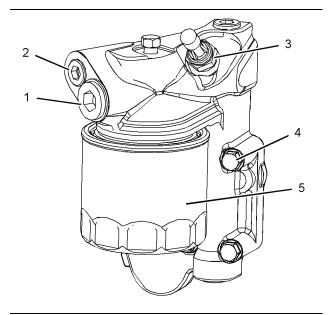


Illustration 33

g02659546

Typical example

(1) Tighten the plug to the following torque.30 N·m (22 lb ft)

19

(2) Tighten the plug to the following torque	30 N	·m
	(22 lb	ft)

- (3) Tighten the engine oil pressure switch to the following torque.......35 N·m (26 lb ft)
- (4) Tighten the bolts to the following torque.....25 N⋅m (18 lb ft)
- (5) Tighten the filter to the following torque.30 N·m (22 lb ft)

i05240850

Engine Oil Cooler

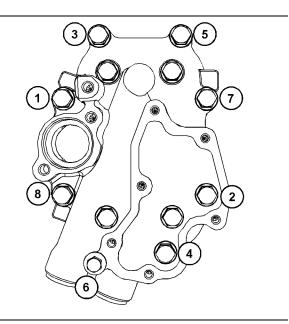


Illustration 34

g02871598

Typical example

Tighten the setscrews in the sequence shown in illustration 34 to the following torque.22 N·m (16 lb ft)

i04346369

Engine Oil Pump

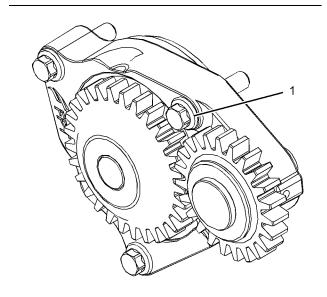


Illustration 35 g02501357

Typical example

(1) Tighten the bolts to an initial torque......15 N⋅m (11 lb ft)

(1) Tighten the bolts to a final torque.25 N·m (18 lb ft)

i04333169

Engine Oil Pressure

i05288769

Engine Oil Pan (Cast Iron Oil Pan)

20 UENR0622

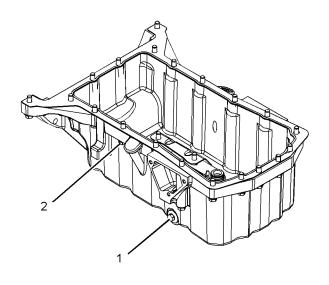


Illustration 36 g02676701

Typical example

(1) Tighten the drain plug to the following torque.50 N·m (37 lb ft)

Tighten the fasteners (2) to a torque of 70 N·m (52 lb ft). Tighten the fasteners in sequence that is shown in illustration 37.

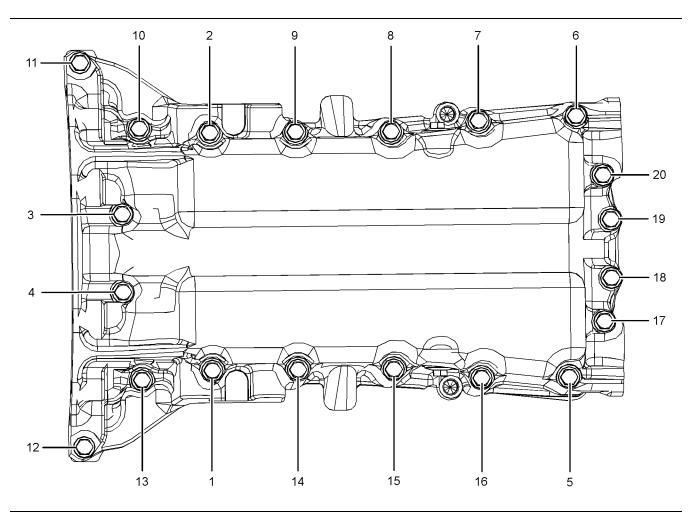
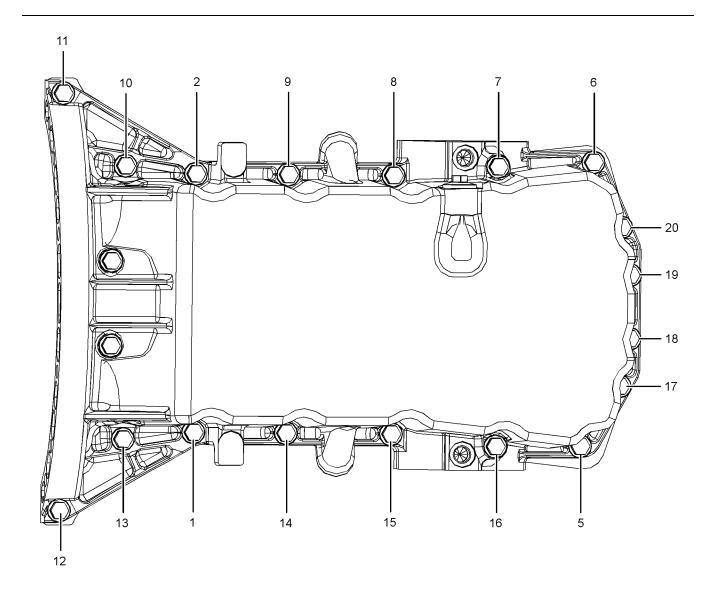



Illustration 37 g02904098

Tightening sequence for the deep tunnel oil pan

Tighten the fasteners (2) to a torque of 70 N·m (52 lb ft). Tighten the fasteners in sequence that is shown in illustration 38.

| Illustration 38 | g02904216

Tightening sequence for the flat bottom oil pan

i04790655

Engine Oil Pan (Aluminum Oil Pan)

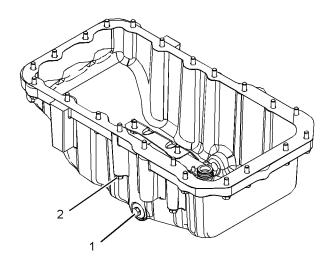


Illustration 39 g02906220

Typical example

(1) Tighten the drain plug to the following torque.50 N·m (37 lb ft)

Tighten the fasteners (2) in sequence that is shown in illustration 40 . Tighten the M8 fasteners to an initial torque of 7.5 N·m (66 lb in). Tighten the M10 fasteners to an initial torque of 13.5 N·m (10 lb ft).

Tighten the fasteners (2) in sequence that is shown in illustration 40 . Tighten the M8 fasteners to a final torque of 25 N·m (18 lb ft). Tighten the M10 fasteners to a final torque of 45 N·m (33 lb ft).

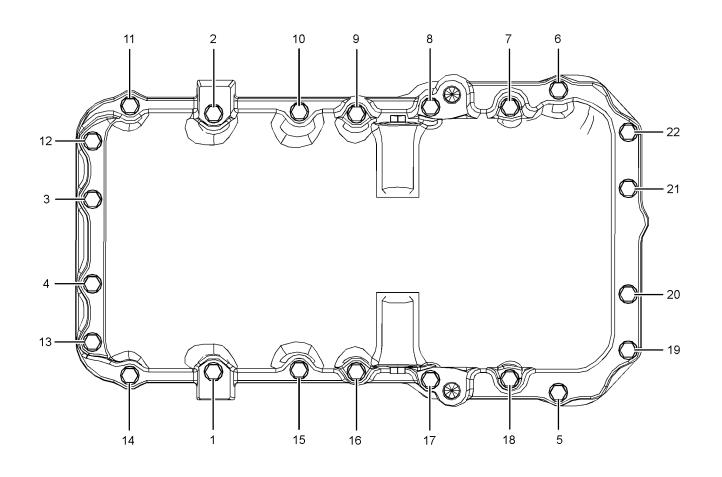
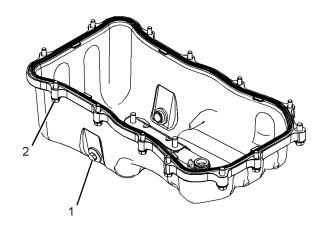



Illustration 40 g02906221

Tightening sequence

i04789574

Engine Oil Pan (Pressed Steel Oil Pan)

25

(1) Tighten the drain plug to the following torque.50 N·m (37 lb ft)

Tighten the fasteners (2) in sequence that is shown in illustration 42 . Tighten the M8 fasteners to an initial torque of 7.5 N·m (66 lb in). Tighten the M10 fasteners to an initial torque of 13.5 N·m (10 lb ft).

Tighten the fasteners (2) in sequence that is shown in illustration 42 . Tighten the M8 fasteners to a final torque of 25 N·m (18 lb ft). Tighten the M10 fasteners to a final torque of 45 N·m (33 lb ft).

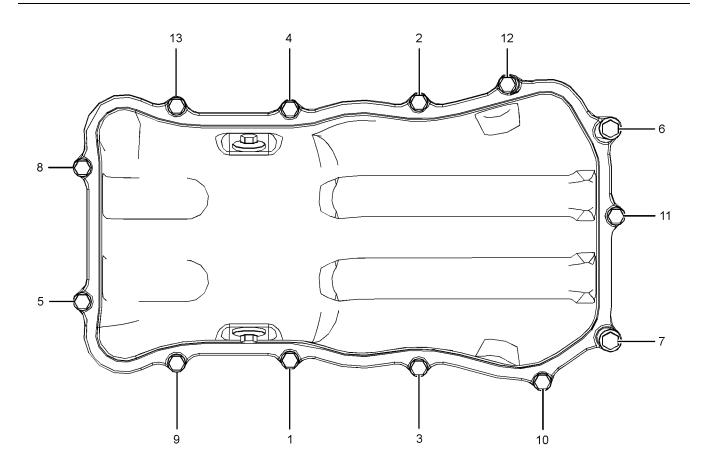


Illustration 42 g02904337

Tightening sequence for the pressed steel oil pan

i05239495

Crankcase Breather

For the correct procedures to remove and install the crankcase breather, refer to Disassembly and Assembly, "Crankcase Breather - Remove" and Disassembly and Assembly, "Crankcase Breather - Install".

i04335212

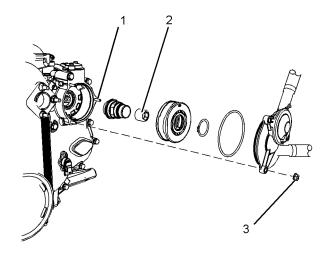


Illustration 43

Typical example

(1) Tighten the studs to the following torque......8 N·m (71 lb in)

(2) Tighten the insert to the following torque.85 N·m (63 lb ft)

(3) Tighten the nuts to the following torque.10 N·m (89 lb in)

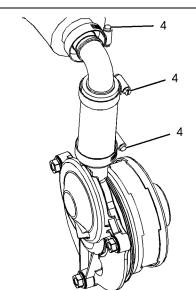


Illustration 44

Typical example

(4) Tighten the clamps to the following torque. 5 N·m (44 lb in)

Water Temperature Regulator and Housing

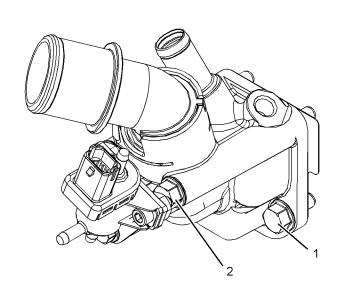


Illustration 45

g02721003

g02621860

g02842121

Typical example

Torque for the vent plug40 N·m (30 lb ft)

Torque for the bolts (1) and (2) that fasten the housing to the cylinder head25 N·m (18 lb ft)

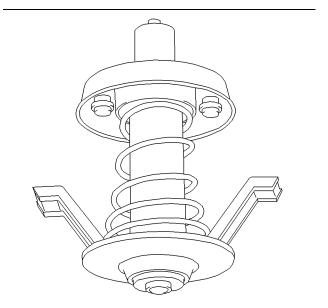


Illustration 46

g00906121

Typical example

Water temperature regulator

27

i04335189

Water Pump

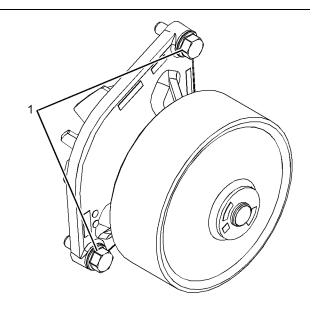


Illustration 47 g02490498

Typical example

i04332590

Cylinder Block

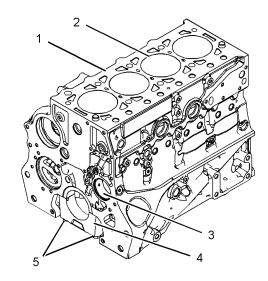


Illustration 48 g02488336
Typical example

- (1) Cylinder block
- (3) Camshaft bearings

Diameter of the bushing in the cylinder block for the number 1 camshaft bearing

......59.222 to 59.248 mm (2.33157 to 2.33259 inch)

Diameter of the bore in the cylinder block for numbers 2, 3 and 4 camshaft journals

......50.069 to 50.119 mm (1.97122 to 1.97319 inch)

Diameter of the bore in the cylinder block for the number 5 camshaft journal

......40.069 to 40.119 mm (1.57752 to 1.57949 inch)

(4) Main bearings

Bore in the cylinder block for the number 1, 2, 3 and 4 main bearings......80.588 to 80.614 mm (3.17275 to 3.17377 inch)

(5) Main bearing cap bolts

Use the following procedure in order to install the main bearing cap bolts:

1. Apply clean engine oil to the threads of the main bearing cap bolts.

- 2. Put the main bearing caps in the correct position that is indicated by a number on the top of the main bearing cap. Install the main bearing caps with the locating tabs in correct alignment with the recess in the cylinder block.
- 3. Evenly tighten the main bearing cap bolts.

Initial torque for the main bearing cap bolts.....50 N·m (37 lb ft)

Final torque for the main bearing cap bolts.80 N·m (59 lb ft)

4. After torquing the bolts for the main bearing caps, the bolts must be rotated for an additional 90 degrees.

Note: Ensure that the crankshaft can rotate freely.

i04605731

Crankshaft

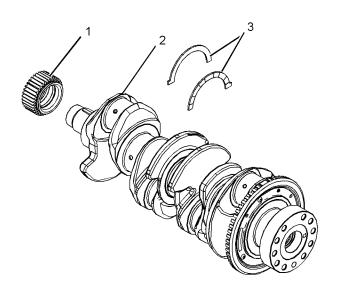


Illustration 49

g02155393

Typical example

- (1) Crankshaft gear
- (2) Crankshaft
- (3) Crankshaft thrust washers

Maximum permissible temperature of the gear for installation on the crankshaft......180 °C (356 °F)

 Note: Refer to Disassembly and Assembly for the correct procedure to remove and install the timing gear for the balancer.

The end play of a new crankshaft...... 0.1 to 0.41 mm (0.00394 to 0.01614 inch)

Standard thickness of thrust washer2.69 to 2.75 mm (0.10591 to 0.10827 inch)

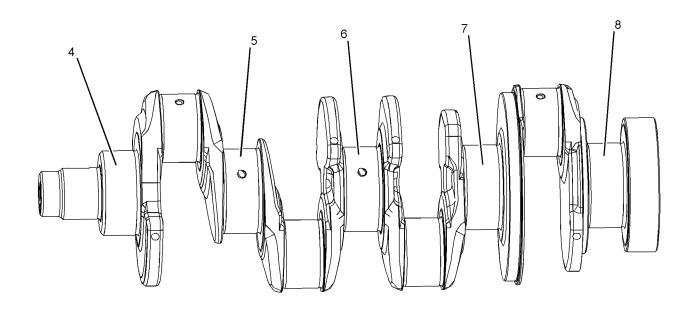


Illustration 50 g02155394

Typical example

(4) Journal 1 (5) Journal 2 (6) Journal 3

(7) Journal 4

Refer to table 4 for the run out of the crankshaft journals.

Table 4

Journal	Run out of the Journals
(1)	Mounting
(2)	0.03 mm (0.00118 inch)
(3)	0.03 mm (0.00118 inch)
(4)	0.03 mm (0.00118 inch)
(5)	Mounting

Inspect the crankshaft for wear or for damage. For more information regarding the servicing of the crankshaft, contact the Global Technical Support Center.

Refer to Specifications, "Connecting Rod Bearing Journal" for more information on the connecting rod bearing journals and connecting rod bearings.

Refer to Specifications, "Main Bearing Journal" for information on the main bearing journals and for information on the main bearings.

(8) Journal 5

i04332830

Connecting Rod Bearing Journal

The original size of the connecting rod bearing journal on the crankshaft71.970 to 71.990 mm (2.83346 to 2.83425 inch)

Maximum permissible wear of a bearing journal on the crankshaft when a new connecting rod is installed0.04 mm (0.00157 inch)

Radius of the fillet of the connecting rod bearing journals 1.6 to 1.7 mm (0.06299 to 0.06693 inch)

Surface finish of connecting rod bearing journals
......Ra 0.3 microns maximum

Surface finish of radii Ra 0.3 microns maximum

i04332763

i04479212

Main Bearing Journal

83.980 to 84.000 mm (3.30629 to 3.30708 inch)
Maximum permissible wear of the main bearing journals0.040 mm (0.0016 inch)
Radius of the fillet of the main bearing journals3.875 to 4.125 mm (0.15256 to 0.16240 inch)
Surface finish of bearing journals and crank pinsRa 0.2 microns
Surface finish of radiiRa 0.4 microns
Width of new main bearing journal where the thrust washer is installed35.235 to 35.165 mm (1.3872 to 1.3844 inch)
Width of new main bearing journal where the thrust washer is not installed

The shell for the main bearings

The shells for the main bearings are available for remachined journals which have the following oversize dimensions.

Oversize bearing shell	0.127	mm ((0.005)	inch)
Oversize bearing shell	0.254	mm ((0.010	inch)
Oversize bearing shell	0.508	mm (0.020	inch)

Thickness at center of the shells of oversize bearing shell 0.25 mm (0.010 inch) 2.226 to 2.232 mm (0.08764 to 0.08787 inch)

Thickness at center of the shells of oversize bearing shell 0.50 mm (0.020 inch) 2.353 to 2.359 mm (0.09264 to 0.09287 inch)

Thickness at center of the shells of oversize bearing shell 0.76 mm (0.030 inch) 2.480 to 2.486 mm (0.09764 to 0.09787 inch)

Width of the main bearing shells ... 26.32 to 26.58 mm (1.03622 to 1.04645 inch)

Connecting Rod

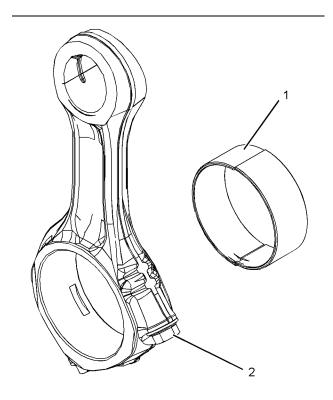
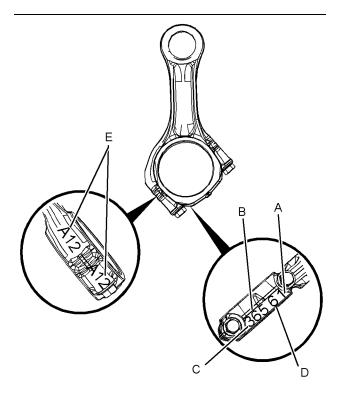


Illustration 51

g02859356


Typical example

(1) The bearing shell for the connecting rod

For the correct procedure to install the bearing shell for the connecting rod, refer to Disassembly and Assembly, "Pistons and Connecting Rods - Assemble".

Table 5

Thickness of Connecting Rod Bearing at the Center	1.955 to 1.968 mm (0.07697 to 0.07748 inch)
Thickness of Bearing Cap at the Center	1.955 to 1.968 mm (0.07697 to 0.07748 inch)
Bearing Clearance	0.080 to 0.035 mm (0.00315 to 0.00138 inch)

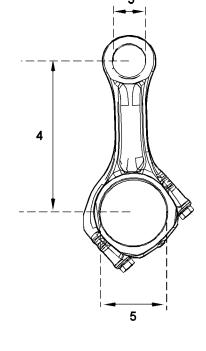


Illustration 52 g02844317

Typical example

- (A) Class of weight
- (B) Part number
- (C) Date of production (DD/MM)
- (D) Date of production (Year)
- (E) Serial number markings on the connecting rod and connecting rod cap

The mating surfaces of the connecting rod are produced by hydraulically fracturing the forged connecting rod. Ensure that the correct cap for the connecting rod is installed with the correct connecting rod. Ensure that the serial numbers (E) for both components match. Refer to illustration 52 for more information.

(2) Torque of the setscrews for the connecting rod50 N·m (37 lb ft)

Tighten the setscrews (2) for the connecting rod for an additional 70 degrees. The setscrews for the connecting rod must be replaced after this procedure.

Illustration 53 g02859357

Typical example

(4) Distance between the parent bores219.05 to 219.1 mm (8.6240 to 8.6260 inch)

Refer to table 6 for the length of connecting rod.

Specifications for the Connecting Rod		
Length Of The Connecting Rod		
161.8 to 162.2 mm (6.37 to 6.38 inch)		

i04332709

Piston and Rings

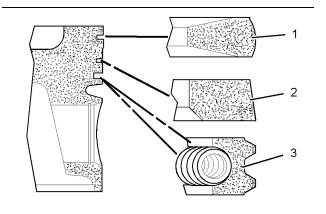


Illustration 54 g01155119

Typical example

(1) Top compression ring

Width of top compression ring 2.068 to 2.097 mm (0.08142 to 0.08256 inch)

Note: When you install a new top compression ring, make sure that the word "TOP" is facing the top of the piston. New top piston rings have a black identification mark. The identification mark must be on the left of the ring end gap when the top piston ring is installed on an upright piston.

(2) Intermediate compression ring

Width of intermediate compression ring 1.970 to 1.990 mm (0.07756 to 0.07835 inch)

Note: When you install a new intermediate compression ring, make sure that the word "TOP" is facing the top of the piston. New intermediate rings have a blue identification mark. The identification mark must be on the left of the ring end gap when the top piston ring is installed on an upright piston.

(3) The oil control ring

Width of oil control ring........... 2.470 to 2.490 mm (0.09724 to 0.09803 inch)

 Note: When you install a new oil control ring, make sure that the word "TOP" is facing the top of the piston. New oil control rings have a red identification mark. The identification mark must be on the left of the ring end gap when the top piston ring is installed on an upright piston. The oil control ring is a two-piece ring that is spring loaded. A pin is used in order to hold both ends of the spring of the oil control ring in position. The ends of the spring of the oil control ring must be installed opposite the end gap of the oil control ring.

Note: Ensure that the ring end gaps of the piston rings are spaced 120 degrees from each other.

Piston

Note: An arrow which is marked on the piston crown must be toward the front of the engine.

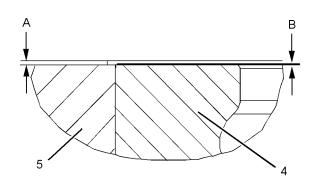


Illustration 55 g02659840

Typical example

- (4) Piston
- (5) Cylinder bore

Measure the piston height above the cylinder block. Refer to Systems Operation, Testing and Adjusting, "Piston Height - Inspect" for the correct procedure. Refer to table 7 to select the correct gasket.

Table 7

Piston Height (A)	Engine Gasket Thickness (B)
0 to 0.07 mm (0 to 0.00276 inch)	0.80 mm (0.03150 inch)
0.08 to 0.22 mm (0.00315 to 0.00866 inch)	0.70 mm (0.02756 inch)

Width of top groove in the piston 2.21 mm (0.08701 inch)

Width of second groove in new piston2.05 to 2.07 mm (0.08071 to 0.08150 inch)

Width of third groove in new piston.... 2.54 to 2.56 mm (0.10000 to 0.10079 inch)

Piston pin

Diameter of a new piston pin35.996 to 35.999 mm

.......35.996 to 35.999 mm (1.41716 to 1.41728 inch)

i04335149

g02490436

Piston Cooling Jet

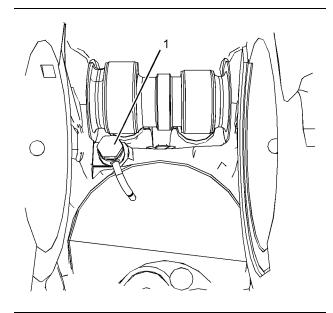


Illustration 56
Typical example

iodi example

(1) Tighten the bolt to the following torque.18 N·m (13 lb ft)

Piston Cooling Jet Alignment

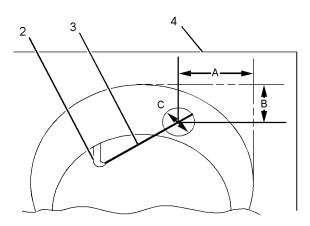


Illustration 57

q01352578

- (2) Piston cooling jet
- (3) Rod
- (4) Cylinder block

Use the following procedure in order to check the alignment of the piston cooling jet.

- Insert rod (3) into the end of the piston cooling jet (2). Rod (3) has a diameter of 1.70 mm (0.067 inch). Rod (3) must protrude out of the top of the cylinder block.
- 2. Dimension (A) is 50.75 mm (1.9980 inch) and dimension (B) is 9.35 mm (0.3681 inch). Dimension (A) and dimension (B) are tangential to the cylinder bore (4).
- **3.** The position of the rod (3) must be within dimension (C). Dimension (C) is 14 mm (0.5512 inch).

Note: Ensure that the rod (3) cannot damage the piston cooling jet when the alignment is checked. The piston cooling jets cannot be adjusted. If a piston cooling jet is not in alignment, the piston cooling jet must be replaced.

i04555081

Balancer

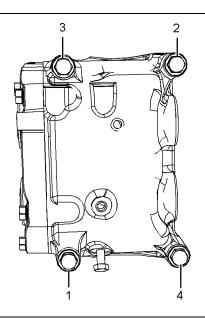


Illustration 58 g02727673

Typical example

Tighten the bolts in the sequence that is shown in illustration 58 to the following torque.70 N·m (52 lb ft)

Backlash values

Backlash between the balancer gears 0.075 to 0.165 mm (0.00295 to 0.00650 inch)

Backlash between the balancer gear and the crankshaft gear0.110 to 0.210 mm (0.00433 to 0.00827 inch)

i05240669

Front Housing and Covers

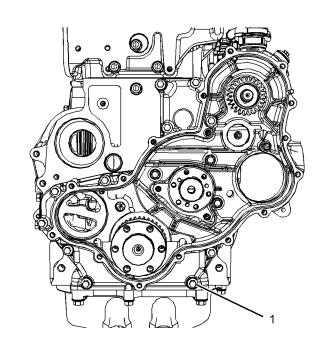


Illustration 59

g02909257

Typical example

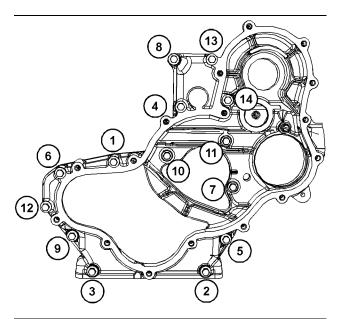


Illustration 60

g02951436

Typical example

i05240675

g02659957

(37 lb ft)

Illustration 61

g02909258

Illustration 63

Typical example

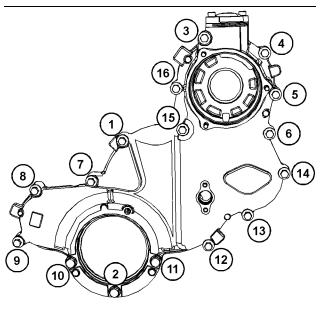
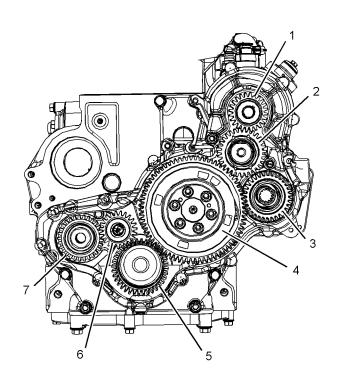



Illustration 62

g02727967

Typical example

Gear Group (Front)

Width of idler gear and bearing assembly20.8 mm (0.81890 inch)

Clearance of idler gear bearing on hub0.015 to 0.125 mm (0.00059 to 0.00492 inch)
The end play of the idler gear 0.3 to 0.483 mm (0.01181 to 0.01902 inch)
Number of teeth
(4) Camshaft gear
Torque for the bolts for the camshaft gear25 N·m (18 lb ft)
Number of teeth72
(5) Crankshaft gear
Bore diameter of crankshaft gear50.88 to 50.92 mm (2.00315 to 2.00472 inch)
Outside diameter of crankshaft hub
50.984 to 51.000 mm (2.00724 to 2.00787 inch)
Clearance of gear on crankshaft −0.06 to -0.12 mm (−0.00236 to -0.00472 inch)
Number of teeth
(6) Oil pump idler gear
Inside diameter of oil pump idler gear bearing16.012 to 16.043 mm (0.63039 to 0.63161 inch)
Outside diameter of oil pump idler gear shaft15.987 to 16.000 mm (0.62941 to 0.62992 inch)
End play of the oil pump idler gear 0.05 to 0.15 mm (0.00197 to 0.00591 inch)
(7) Oil pump gear
Inside diameter of oil pump gear bearing15.932 to 15.957 mm (0.62724 to 0.62823 inch)
Outside diameter of oil pump gear shaft15.987 to 16.013 mm (0.62941 to 0.63043 inch)
End play of the oil pump gear 0.05 to 0.15 mm (0.00197 to 0.00591 inch)
Backlash values
Backlash between the fuel injection pump gear (1) and the idler gear (2) 0.07 to 0.17 mm (0.00276 to 0.00669 inch)

i04346169

Flywheel

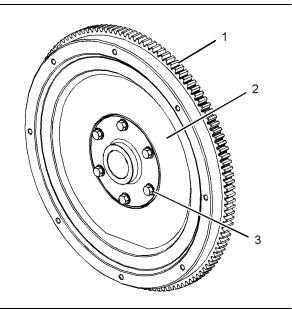
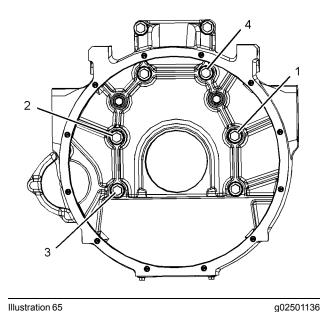


Illustration 64
Typical example

g02501156

(1) Flywheel ring gear

Note: Do not use an oxyacetylene torch to heat the flywheel ring gear.


- (2) Flywheel
- (3) Bolt

37

Tighten the flywheel bolts to an initial torque.30 N·m (22 lb ft) Tighten the flywheel bolts to the additional amount. 90 degrees

i04346112

Flywheel Housing

Typical example

Tighten the setscrews in the sequence that is shown in illustration 65 to an initial torque.20 N·m (15 lb ft)

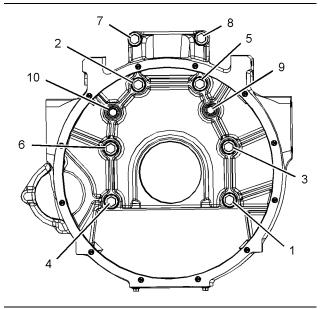


Illustration 66

g02727691

Typical example

Tighten setscrews (1), (2), (3), (4), (5), (6), (7) and (8) in the sequence that is shown in illustration 66 to a final torque......110 N·m (81 lb ft)

Tighten setscrews (9) and (10) in the sequence that is shown in illustration 66 to a final torque......35 N·m (26 lb ft)

i05240730

Crankshaft Pulley

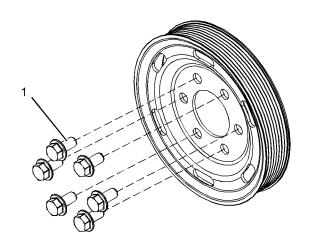


Illustration 67

g02501059

Typical example

(1) Tighten the bolts to the following torque.....45 N·m (33 lb ft)

i05240729

Fan Drive

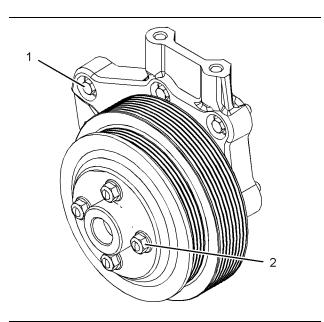


Illustration 68

g02844797

Typical example

(1) Tighten the bolts that secure the fan drive to the engine to the following torque......25 $N \cdot m$ (18 lb ft)

(2) Tighten the fasteners for the fan support to the following torque.......25 $N \cdot m$ (18 lb ft)

i05240694

Engine Lifting Bracket

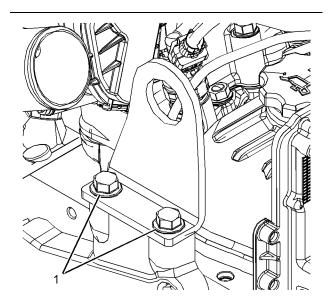


Illustration 69

g02488718

Typical example

(1) Tighten the bolts on the front engine lifting bracket to the following torque......45 N·m (33 lb ft)

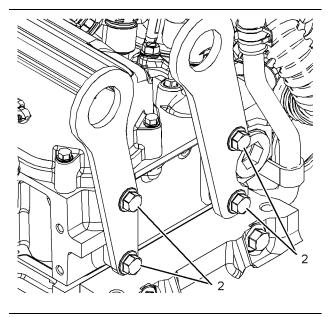


Illustration 70

Typical example

g02488736

(2) Tighten the bolts on the rear engine lifting brackets to the following torque.......65 N·m (48 lb ft)

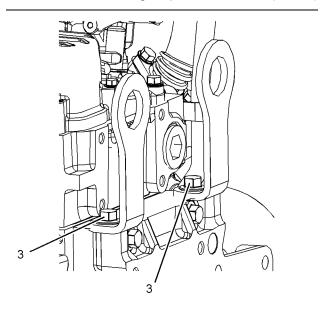


Illustration 71 Typical example

(3) Tighten the bolts on the rear engine lifting brackets to the following torque......110 N·m (81 lb ft)

i05282770

g03342585

Alternator

12V Alternator

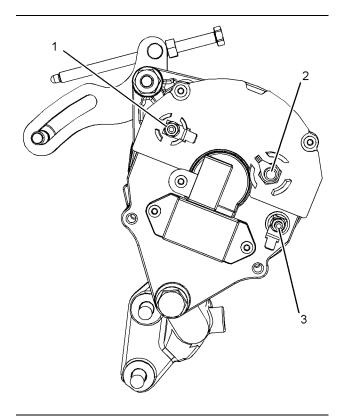


Illustration 72

g03357091

Typical example

- (1) Terminal "D+" (3) Terminal "W"
- (2) Terminal "B+"

Tighten the nut on the terminal to the following torque......11 N·m (97 lb in)

Tighten the nut for the alternator pulley to the following torque......50 N·m (37 lb ft)

Output

The output of the alternator65 Amp

UENR0622

12V Alternator

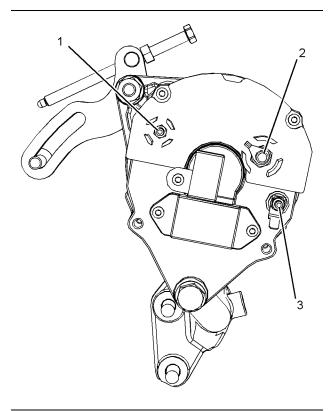


Illustration 73 g03357125

Typical example

(3) Terminal "W"

(1) Terminal "D+"

(2) Terminal "B+"

Tighten the nut for the alternator pulley to the following torque......50 N·m (37 lb ft)

Output

The output of the alternator80 Amp

12V Alternators

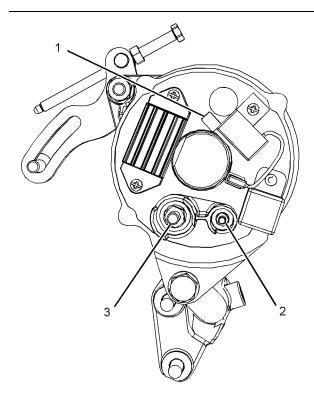


Illustration 74

Typical example

- (1) Terminal "W"
- (2) Terminal "D+"

(3) Terminal "B+"

Tighten the nut on the terminal to the following torque......7.75 N·m (68.60 lb in)

Tighten the nut for the alternator pulley to the following torque......50 N·m (37 lb ft)

Output

The outputs of the alternators100 Amp, and 120 Amp

g03357160

UENR0622 41
Specifications Section

24V Alternator

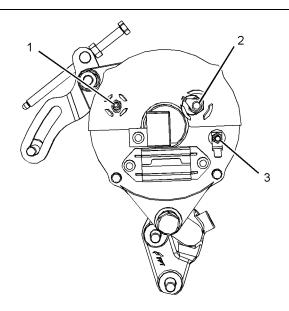


Illustration 75 g02620019

Typical example

(3) Terminal "W"

(1) Terminal "B+"

Tighten the nut on the terminal to the following.7.75 N·m (68.60 lb in)

(2) Terminal "D+"

Tighten the nut for the alternator pulley to the following torque......50 N·m (37 lb ft)

Output

The outputs of the alternators65 Amp

i04415750

Starter Motor

12 V Starting Motor 3.2 kW

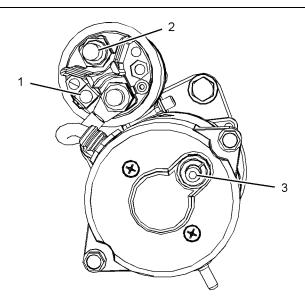


Illustration 76 g02614019

Typical example

- (1) Tighten the solenoid terminal to the following torque........5.8 N·m (51 lb in)

12 V Starting Motor 4.2 kW

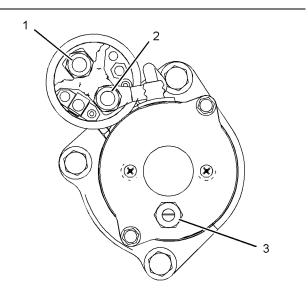


Illustration 77 g02678770

Typical example

(1) Tighten the positive terminal nut	t to the following
torque	15 N·m (11 lb ft)

- (3) Tighten the negative terminal nut to the following torque.......18 N·m (13 lb ft)

24 V Starting Motor 4.5 kW

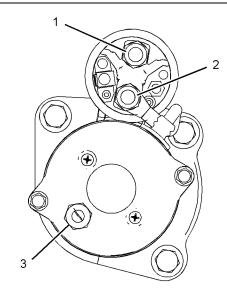


Illustration 78
Typical example

g02678817

- (2) Tighten the solenoid terminal to the following torque........5.8 N·m (51 lb in)
- (3) Tighten the negative terminal nut to the following torque.......18 N·m (13 lb ft)

i04346352

Coolant Temperature Sensor

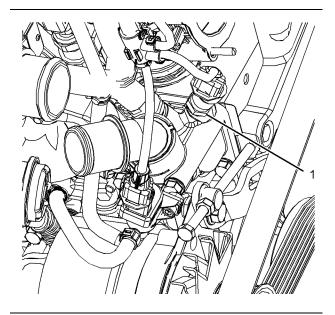


Illustration 79
Typical example

g02621136

(1) Tighten the coolant temperature sensor to the following torque......25 N·m (18 lb ft)

i05246996

Boost Pressure Sensor (If equipped)

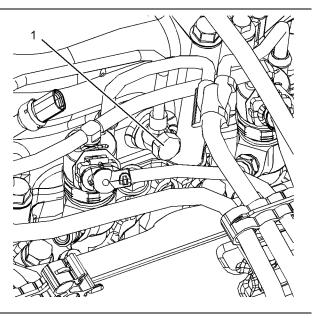


Illustration 80

g03344803

Typical example

UENR0622 43
Specifications Section

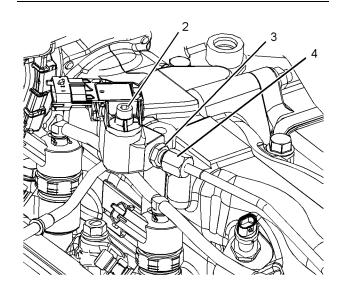


Illustration 81 g03344804

Typical example

(1) Tighten the fastener to the following torque.15 N·m (11 lb ft)

(4) Tighten the fastener to the following torque.
......15 N·m (11 lb ft)

i04555069

Oxygen Sensor

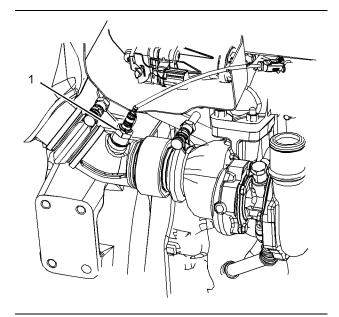


Illustration 82 g02844456

Typical example

(1) Tighten the sensor to the following torque.50 N·m (37 lb ft)

i05246995

Inlet Manifold Temperature Sensor

(If equipped)

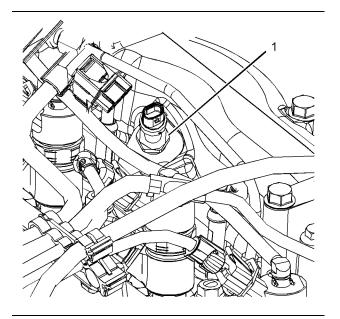


Illustration 83
Typical example

g03344802

Tighten the sensor to the following torque......15 N·m (11 lb ft)

i04550539

Inlet Manifold Temperature and Pressure Sensor (If equipped)

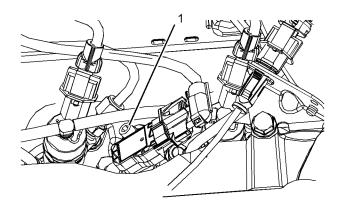


Illustration 84 g02722054
Typical example

i04550469

Temperature Sensor (DPF Inlet)



Illustration 85 g02722006
Typical example

(1) Tighten the temperature sensor to the following torque......45 N·m (33 lb ft)

i04550534

Temperature Sensor (DOC Inlet)

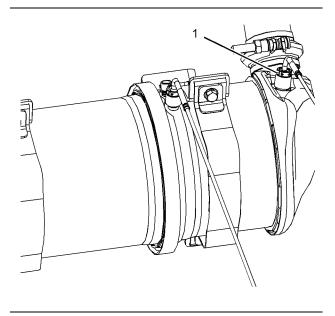


Illustration 86 g02722047

Typical example

45

(1) Tighten the temperature sensor to the following torque.......45 N·m (33 lb ft)

i05240876

Pressure Sensor (NOx Reduction System)

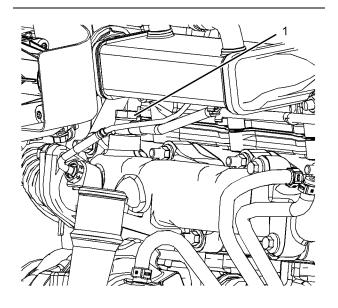


Illustration 87
Typical example

g02724012

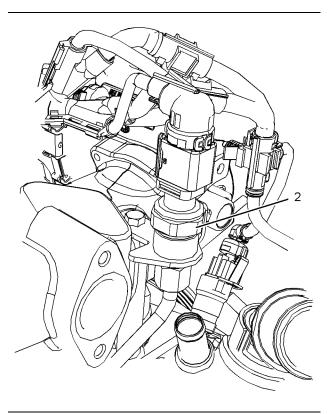


Illustration 88 g03342627

Typical example

- (1) Tighten the fastener to the following torque.
 15 N·m (11 lb ft)
- (2) Tighten the sensor to the following torque.
 15 N·m (11 lb ft)

i05240937

Temperature Sensor (NOx Reduction System)

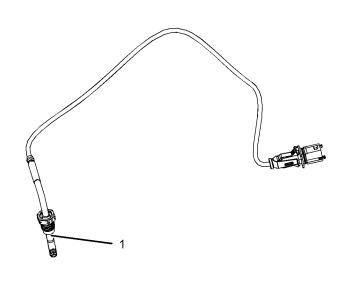


Illustration 89 g03342646
Typical example

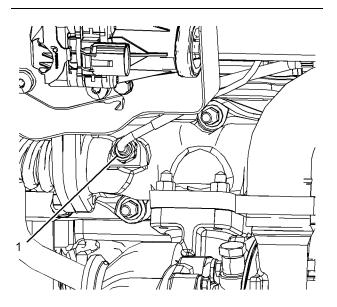


Illustration 90 g02722380

Typical example

(1) Tighten the sensor to the following torque.45 N·m (33 lb ft)

Operating voltage5 VDC

i05239559

Speed/Timing Sensor

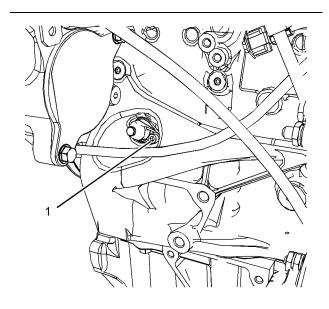


Illustration 91 g02620180 Typical example

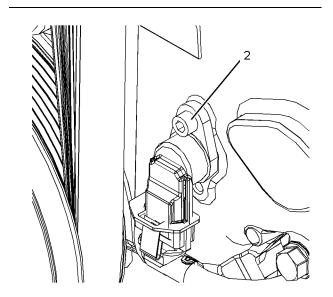


Illustration 92 g02620181

Typical example

(1) Tighten the screw for the crankshaft position sensor to the following torque...........10 N·m (89 lb in)

(2) Tighten the screw for the camshaft position sensor to the following torque.......10 N·m (89 lb in)

i05241792

Electronic Control Module

Tighten the M6 fasteners to the following torque8 N·m (71 lb in)

i04425773

Glow Plugs

Illustration 93 g02621690 Typical example

(1) Tighten the glow plugs to the following torque. 9 N·m (80 lb in)

Index

A	F	
Alternator39	Fan Drive	38
12V Alternator 39–40	Flexible Exhaust Pipe	16
12V Alternators 40	Flywheel	36
24V Alternator 41	Flywheel Housing	37
	Front Housing and Covers	34
В	Fuel Filter Base (Primary Fuel Filter Base)	6
D	Fuel Filter Base (Secondary Fuel Filter Base)) 5
Balancer 33	Fuel Injection Lines	
Boost Pressure Sensor (If equipped) 42	Fuel Injection Pump	
	Fuel Injectors	
C	Fuel Manifold (Rail)	6
Camshaft	G	
Camshaft Bearings	Coor Croup (Front)	25
Connecting Rod	Gear Group (Front)	
Connecting Rod Bearing Journal	Glow Plugs	47
Coolant Temperature Sensor		
Crankcase Breather	I	
Crankshaft		_
Crankshaft Pulley	Important Safety Information	2
Cylinder Block	Inlet Manifold Temperature and Pressure	
Cylinder Head	Sensor (If equipped)	44
Cylinder Head Valves10	Inlet Manifold Temperature Sensor (If	40
	equipped)	43
D	_	
Diesel Particulate Filter (Through Flow	L	
Diesel Particulate Filter (DPF))	Lifter Group	7
Diesel Particulate Filter (Wall Flow Diesel	Entor Group	
Particulate Filter (DPF))		
Tartiodiate Filter (BTT)	M	
E	Main Bearing Journal	30
	The shell for the main bearings	30
Electronic Control Module		
Engine Design4	0	
Engine Lifting Bracket	O	
Engine Oil Cooler19	Oxygen Sensor	43
Engine Oil Filter Base 18		
Engine Oil Pan (Aluminum Oil Pan)	Р	
Engine Oil Pan (Cast Iron Oil Pan)19	Υ	
Engine Oil Pan (Pressed Steel Oil Pan) 24	Piston and Rings	31
Engine Oil Pressure	Piston	
Engine Oil Pump	Piston Cooling Jet	33
Exhaust Cooler (NRS)14	Piston Cooling Jet Alignment	
Exhaust Gas Valve (NRS) 14	Pressure Sensor (NOx Reduction System)	
Exhaust Manifold 15	•	

R	
Rocker Shaft	7
S	
Specifications Section	3 1 1
т	
Table of Contents	3
Temperature Sensor (DOC Inlet)44	
Temperature Sensor (DPF Inlet)	1
Temperature Sensor (NOx Reduction System)4	=
Turbocharger	
V	
Valve Mechanism Cover	9
W	
Water Pump	